TH

Cho đa thức f(x) thỏa man x.f(x-3) = (x+2).f(x). Chứng tỏ rằng đa thức f(x) có ít nhất hai nghiệm

H24
8 tháng 4 2016 lúc 21:58

Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

Bình luận (0)
NV
8 tháng 4 2016 lúc 22:03

thay x=0 ta có 0.f(-3)=2f(0)

                      ->2f(0)=0

                     ->f(0)=0 

               nên 0 là 1 nghiệm của f(x)

thay x=-2 ta có-2f(-5)=0.f(x)

                    ->   -2f(-5)=0

                   ->f(-5)=0

             nên -5 là 1 nghiệm của f(x)

   vậy f(x) có it nhất 2 nghiệm

Bình luận (0)
NK
8 tháng 4 2016 lúc 22:10

x.f(x-3)=(x+2)f(x)     (1)

Với x=-2, (1) <=> (-2).f(-5)=0.f(-2)

<=>(-2).f(-5)=0

<=>f(-5)=0

=> x=-5 là nghiệm f(x)

Với x=0, (1) <=> 0.f(-3)=2.f(0)

<=> 2.f(0)=0

<=> f(0)=0

=> x=0 là nghiệm f(x)

Vậy f(x) có ít nhất 2 nghiệm là 0; -5

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
LH
Xem chi tiết
BC
Xem chi tiết
BD
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết