PV

Cho đa thức f(x)= a.x^2+b.x+c ; có 2 a, a+b và c là các số nguyên. Chứng minh f(x) nhận giá trị với mọi số nguyên x Giúp mình với mình cần gấp!

AH
3 tháng 12 2023 lúc 0:37

Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:

$a=\frac{m}{2}; b=n-\frac{m}{2}$.

Khi đó:

$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.

$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:

$x(x-1)\vdots 2$

$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$

Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$

$\Rightarrow f(x)\in\mathbb{Z}$

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
HV
Xem chi tiết
NM
Xem chi tiết
MB
Xem chi tiết
TN
Xem chi tiết
SX
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
CD
Xem chi tiết
WK
Xem chi tiết