Ta có :
f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0
\(\Rightarrow\)f(1) = -f(-2)
Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0
Ta có :
f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0
\(\Rightarrow\)f(1) = -f(-2)
Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0
Câu 13. (1,0 điểm) Cho đa thức f(x) = ax2 + bx + c.
a) Chứng tỏ rằng nếu a + b + c = 0 thì đa thức f(x) có một nghiệm x = 1.
b) Áp dụng tìm một nghiệm của đa thức: f(x) = 5x2 – 6x + 1
Cho đa thức f(x) = ax2+bx+c
a) Chứng tỏ rằng : - Nếu a+b+c = 0 thì x = 1 là một nghiệm của f(x)
- Nếu a-b+c = 0 thì x = -1 là một nghiệm của f(x)
b) Chướng tỏ rằng : - Nếu 5a+b+2c = 0 thì f(-1) . f(2) < hoặc = 0
- Nếu 13a-b+2c = 0 thì f(2) . f(-3) < hoặc = 0
cho đa thức f{x}=ax^2+bx+c . C/M nếu 5a-b+2c=0 thì f{2}.f{1} nhỏ hơn hoặc bằng 0
cho đa thức f(x)=ax^2+bx+c
a, biết 5a+b+2c =0 . Chứng tỏ f(2).f(-1)<=0
b, biết 7a+b=0. Hoi f(10).f(-3) có thể là số âm ko
cho đa thức f(x)= \(ax^2\)+bx+c chứng tỏ rằng f(-2).f(3)\(\le\)0 nếu 13a+b+2c=0
cho đa thức F(x)=ax^2+bx+c chứng tỏ rằng F(-2).F(3) bé hơn hoặc bằng 0 biết rằng 13a+b+2c=0
Cho đa thức f(x) = ax2 + bx + c
chứng tỏ rằng : f( -2).f(-3) < hoặc = 0 nếu 13a + b + 2c = 0
MÌNH XIN CÁC BẠN GIÚP MÌNH
a, Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức P(x) = ax2 + bx + c
b, Chứng tỏ rằng nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức Q(x) = ax2 + bx + c
Cho đa thức f(x) = ax2 + bx + c.
Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức f(x)