VH

Cho đa thức f x có các hệ số nguyên. Biết f 1 và f 2 là các số lẻ. Chứng minh rằng f x không có nghiệm nguyên.

DH
19 tháng 6 2021 lúc 16:16

Giả sử \(f\left(x\right)\)có nghiệm nguyên là \(a\).

Khi đó \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)(với \(g\left(x\right)\)là đa thức với các hệ số nguyên) 

\(f\left(1\right)=\left(1-a\right)g\left(1\right)\)là số lẻ nên \(1-a\)là số lẻ suy ra \(a\)chẵn. 

\(f\left(2\right)=\left(2-a\right)g\left(2\right)\)là số lẻ nên \(2-a\)là số lẻ suy ra \(a\)lẻ. 

Mâu thuẫn. 

Do đó \(f\left(x\right)\)không có nghiệm nguyên. 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VH
Xem chi tiết
H24
Xem chi tiết
RV
Xem chi tiết
TM
Xem chi tiết
VT
Xem chi tiết
NT
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết