PB

Cho đa giác đều (P) có 20 đỉnh. Lấy tùy ý 3 đỉnh của (P), tính xác suất để 3 đỉnh lấy được tạo thành tam giác vuông không có cạnh nào là cạnh của (P).

A. 3/38

B. 7/114

C. 7/57

D. 5/114

CT
13 tháng 12 2019 lúc 5:05

Chọn C.

Chọn ngẫu nhiên 3 đỉnh của đa giác có: C 20 3 = 1140  cách chọn.

Đa giác đều có 20 đỉnh có 10 đường chéo đi qua tâm đa giác mà cứ 2 đường chéo tại thành 1 hình chữ nhật và 1 hình chữ nhật tạo thành 4 tam giác vuông.

Trong 10 đường chéo đi qua tâm ta trừ đi 10 hình chữ nhật chứa cạnh của (P)

Do đó số tam giác vuông không có cạnh nào của (P) là: 4 C 10 2 - 10 = 140  tam giác.

Vậy xác suất cần tìm là: P = 140/1140 = 7/57

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết