PB

Cho đa giác đều A1A2…A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm A1;A2;…;A2n gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm A1;A2;…;A2n . Tìm n?

A3

B. 6

C.8

D.12

CT
13 tháng 3 2018 lúc 15:45

Số tam giác có các đỉnh là 3 trong 2n điểm A1;A2;…;A2n  là: 

Ta thấy ứng với hai đường chéo đi qua tâm O của đa giác A1A2…A2n cho tương ứng một hình chữ nhật có 4 đỉnh là 4 điểm trong 2n điểm A1;A2;…;A2n và ngược lại mỗi hình chữ nhật như vậy sẽ cho tương ứng hai đường chéo đi qua tâm O của đa giác.

Mà số đường chéo đi qua tâm của đa giác là n nên số hình chữ nhật có đỉnh là 4 trong 2n điểm bằng 

Theo giả thiết:

n=8.

Chọn C

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết