H24

Cho (d): 2(m-1)x+(m-2)y=2

Tìm m để (d) cách gốc tọa độ 1 khoảng lớn nhất

 

AH
13 tháng 6 2021 lúc 0:36

Lời giải:

Nếu $m=1$ thì $(d): y=-2$ cách $O$ một khoảng $d=2$

Nếu $m=2$ thì $(d): x=1$ cách $O$ một khoảng $d=1$

Nếu $m\neq 1;2$:
Gọi $A$ và $B$ là giao điểm của $(d)$ với trục $Ox, Oy$

$y_A=0\Rightarrow x_A=\frac{1}{m-1}$

$x_B=0\Rightarrow y_B=\frac{2}{m-2}$

Gọi khoảng cách từ $O$ đến (d) là $h$ thì theo hệ thức lượng trong tam giác vuông thì:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}\) \(=(m-1)^2+(\frac{m-2}{2})^2\)

Để $h_{\max}$ thì $\frac{1}{h^2}$ min hay $(m-1)^2+(\frac{m-2}{2})^2$ min

Dễ thấy:

\((m-1)^2+(\frac{m-2}{2})^2=\frac{3}{2}m^2-4m+3\) \(=\frac{3}{2}(m-\frac{4}{3})^2+\frac{1}{3}\) đạt min khi $m=\frac{4}{3}$

Khi đó $h=\sqrt{3}$

Thông qua các TH trên thì thấy $m=1$ thì thỏa đề.

Bình luận (0)

Các câu hỏi tương tự
D8
Xem chi tiết
DA
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
OT
Xem chi tiết
CC
Xem chi tiết
TA
Xem chi tiết