Tính giá trị biểu thức:
M= sin x.cos x + \(\dfrac{sin^2x}{1+cotx}\) + \(\dfrac{cos^2x}{1+tanx}\) với 0độ<x<90độ
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
Chứng minh
a)\(\left(\sin x+\cos x\right)^2=1+2\sin x\)\(\cos x\)
b)\(\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2=2\)
c)\(\sin^4x+\cos^4x=1-2\sin^2x\cos^2x\)
1+tanx=\(\frac{1}{cos^2x}\)
1+\(cos^2x\)=\(\frac{1}{sin^2x}\)
\(\frac{1}{tanx+1}+\frac{1}{cotx+1}\)= 1
\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=2\)
CM GIÙM E CẦN GẤP
rút gọn biểu thức sau:
B=\(\dfrac{1-4\sin^2x.\cos^2x}{\left(\sin x+\cos x\right)^2}+2\sin x.\cos x\) , với 0 độ<x<90 độ
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=\cos^4x-\sin^4x+2\sin^2x+\tan2x.\cot2x\)
b) \(B=\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
c) \(C=3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)
d) \(D=2\left(\sin^4x+\cos^4x+\sin^2x.\cos^2x\right)-\left(\sin^8x+\cos^8x\right)\)
tính \(\sin x\cdot\cos x+\frac{\sin^2x}{\cos^2x}+\frac{\cos^2x}{\sin^2x}\)
Chứng minh đẳng thức:
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin x+\cos x\)
Rút gọn: 1 - Sin^2x/1+Cotx - Cos^2x/1+tanx