SD

Cho \(cosa=-\dfrac{2}{5}\) và \(\pi< a< \dfrac{3\pi}{2}\)

a) Tính các giá trị lượng giác còn lại của góc a

b) Giá trị biểu thức P = cos2a - cos\(\left(\dfrac{\pi}{3}-a\right)\)

RH
18 tháng 2 2022 lúc 8:38

b)\(P=cos2a-cos(\dfrac{\pi}{3}-a) \\=2cos^2a-1-cos\dfrac{\pi}{3}cosa-sin\dfrac{\pi}{3}sina \\=2.(\dfrac{-2}{5})^2-1-\dfrac{1}{2}.\dfrac{-2}{5}-\dfrac{\sqrt3}{2}.\dfrac{-\sqrt{21}}{5} \\=\dfrac{-24+15\sqrt7}{50}\)

Bình luận (0)
DL
18 tháng 2 2022 lúc 8:05

a, Vì : \(\pi< a< \dfrac{3\pi}{2}\)  nên \(cos\alpha< 0\) mà \(cos^2\alpha=1-sin^2\alpha=1-\dfrac{4}{25}=\dfrac{21}{25},\)

do đó : \(cos\alpha=-\dfrac{\sqrt{21}}{5}\)

từ đó suy ra : \(tan\alpha=\dfrac{2}{\sqrt{21}},cot\alpha=\dfrac{\sqrt{21}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
TV
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết