BT

cho các số x,y,z thỏa mãn hệ phương trình sao:

x2 + y2 + z2 =1

x+ y3  + z=1

Tính P=xyz

NC
25 tháng 6 2016 lúc 17:24

Vì x^2+y^2+z^2=1 nên 0 <= x^2<=1, 0<=y^2<=1, 0<=z^2<=1 ( <= : nhỏ hơn hoặc bằng nha bn:))

suy ra -1<=x<=1: -1<=y<=1,-1<=z<=1 (*)

Xét x^2+y^2+z^2-(x^3+y^3+x^3)=1

     x^2(1-x)+y^2(1-y)+z^2(1-z)=0 (**)

Có x^2 , y^2, z^2>=0 với mọi x,y,z

Lại có x<=1, y<=1, z<=1 nên 1-x>=0, 1-y>=0, 1-z>0 (***)

Từ (**) và (***) suy ra:

x^2(1-x)+y^2(1-y)+z^2(1-z)>=0 với mọi x, y, z

Nên từ (*) suy ra: x^2(1-x)=0

y^2(1-y)=0

z^2(1-z)=0

Suy ra có 3 trường hợp :x=0 hoặc x=1 ; y=0 hoặc y=1, z=0 hoặc z=1

Với x=1 suy ra y=z=0 nên P=0

Với y=1 suy ra x=z=0 nên P=0

Với z=1 suy ra y=x=0 nên P=0

Vậy trong mọi trường hợp P=0

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
PB
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
VT
Xem chi tiết
NP
Xem chi tiết
QW
Xem chi tiết
TN
Xem chi tiết
VT
Xem chi tiết