Ta có
x + y \(\ge\)xy(4 - x - y)
<=> x + y + xy2 + yx2 - 4xy \(\ge0\)
<=> \(\left(x-2xy+xy^2\right)+\left(y-2xy+yx^2\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-y\sqrt{x}\right)^2+\left(\sqrt{y}-x\sqrt{y}\right)^2\ge0\)
=> ĐPCM
Ta có
x + y \(\ge\)xy(4 - x - y)
<=> x + y + xy2 + yx2 - 4xy \(\ge0\)
<=> \(\left(x-2xy+xy^2\right)+\left(y-2xy+yx^2\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-y\sqrt{x}\right)^2+\left(\sqrt{y}-x\sqrt{y}\right)^2\ge0\)
=> ĐPCM
Cho x,y,z là các số thực dương thỏa mãn x + y + z = 4
Chứng minh : x + y >= xyz
Cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2=4\sqrt{xyz}\) Chứng minh rằng \(x+y+z>2\sqrt{xyz}\)
Cho x,y,z là các số thực dương thỏa mãn : x+y+z=xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x,y,z là số thực dương thỏa mãn: \(x^2+y^2+z^2=4\sqrt{xyz}\) Chứng minh rằng \(x+y+z>2\sqrt{xyz}\)
Cho x, y, z là các số thực dương thỏa mãn: \(xyz=x+y+z+2\)
Chứng minh \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)
Cho x,y,z là các số thực dương thỏa mãn xy + yz + zx = xyz
Chứng minh rằng : \(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Cho x ,y ,z là các số nguyên dương thỏa mãn xyz = 1 . Chứng minh rằng :
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge\frac{3}{2}\)
Cho các số dương a,b,c,x,y,z thỏa mãn các điều kiện a+b+c =9 , ax+by+cz = xyz . Chứng minh rằng : x + y + z > 6
viết các số thực dương x,y,z thỏa mãn xyz=1,chứng minh rằng
\(\sqrt{\dfrac{x^4+y^4+z}{3z^3}}+\sqrt{\dfrac{y^4+z^4+x}{3x^3}}+\sqrt{\dfrac{z^4+x^4+y}{3y^3}}\ge x^2+y^2+z^2\)
Mọi người giúp em với em cần gấp ạ