NT

cho các số x,y thỏa mãn x>0;y>0 và x+y=1. tìm max và min của phương trình A=x^2+y^2

HH
5 tháng 8 2016 lúc 21:20
GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TY
Xem chi tiết
KM
Xem chi tiết
QT
Xem chi tiết
BN
Xem chi tiết
IA
Xem chi tiết
DD
Xem chi tiết
DH
Xem chi tiết
NH
Xem chi tiết