Cho hàm số y = x 3 - 3 ( m + 3 ) x 2 + 3 có đồ thị (C). Tìm tất cả các giá trị của m sao cho qua điểm A(-1;1) kẻ được đúng 2 tiếp tuyến đến (C), Một tiếp tuyến là △ 1 : y = - 1 và tiếp tuyến thứ 2 là thoả mãn tiếp xúc với (C) tại N đồng thời cắt (C) tại P (khác N) có hoành độ bằng 3.
A. Không tồn tại m thoả mãn
Cho hàm số y = x 3 - 3 ( m + 3 ) x 2 + 3 có đồ thị (C). Tìm tất cả các giá trị của m sao cho qua điểm A(-1;1) kẻ được đúng 2 tiếp tuyến đến (C), Một tiếp tuyến là ∆ 1 : y = - 1 và tiếp tuyến thứ 2 là thoả mãn tiếp xúc với (C) tại N đồng thời cắt (C) tại P (khác N) có hoành độ bằng 3.
A. Không tồn tại m thoả mãn
B. m=2
C.m=0; m= -2
D. m= -2
Cho a, b, c, d, e, f là các số thực thỏa mãn
( d - 1 ) 2 + e - 2 2 + f - 3 2 = 1 a + 3 2 + b - 2 2 + c 2 = 9
Gọi giá trị lớn nhất, giá trị nhỏ nhất của biểu thức F = a - d 2 + b - e 2 + c - f 2 lần lượt là M, m
Khi đó, M - m bằng:
A. 10
B. 10
C. 8
D. 2 2
Cho hàm số y = 2 x - 2 x - 2 có đồ thị là (C).M là điểm thuộc (C) sao cho tiếp tuyến của (C) tại M cắt hai đường tiệm cận của (C) tại hai điểm A, B thỏa mãn AB = 2 5 . Gọi S là tổng các hoành độ của tất cả các điểm M thỏa mãn bài toán. Giá trị của S bằng:
A. 8
B. 5
C. 7
D. 6
Cho hàm số f x = log 1 2 log 4 log 1 4 log 16 log 1 16 x . Tập xác định của f(x) là D=(a;b) trong đó a và b là các số thực, b − a = m n , m và n là các số tự nhiên nguyên tố cùng nhau. Tìm tổng m + n.
A. 19
B. 31
C. 271
D. 319
Tìm tập hợp tất cả các giá trị của tham số m để có đúng 8 số phức z thỏa mãn đồng thời các điều kiện z + z ¯ + z - z ¯ = z 2 và z = m
Cho m, n không đồng thời bằng 0. Tìm điều kiện của m, n để hàm số y = msin x - ncos x - 3 x nghịch biến trên ℝ .
Cho m,n không đồng thời bằng 0. Tìm điều kiện của m, n để hàm số y=msinx-ncosx-3x nghịch biến trên R.
A..
B..
C..
D..
Cho hàm số y = m x + n x - 1 có đồ thị (C). Biết tiệm cận ngang của (C) đi qua điểm A(-1; 2) đồng thời điểm I(2; 1) thuộc (C). Khi đó giá trị của m + n là
A. m + n = -1.
B. m + n = 1.
C. m + n = -3.
D. m + n = 3 .