Cho 4 số tự nhiên khác 0 thỏa mãn: a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số
cho các số nguyên a ; b thỏa mãn ( a2 + b2 ) chia hết cho 74.CMR a x b chia hết cho 74
Biết rằng các số tự nhiên a và b thỏa mãn a+b và a^2+b^2 cùng chia hết cho 11. CMR a.b cũng chia hết cho 11
B1) Tìm các B(25) và đồng thời là Ư(300)
B2) Tìm số tự nhiên n thỏa mãn điều kiện:
a) 12 chia hết ( n - 1)
b) 20 chia hết ( 2n + 1)
c) ( 2n + 3) chia hết cho 3
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
cho a;b là các số tự nhiên thỏa mãn a+5b chia hết cho 7
Chứng minh rằng 10a+b chia hết cho 7
cho a và b là các số tự nhiên thỏa mãn 6a+11b chia hết cho 31.Chứng minh rằng a +7b chia hết cho 31
Bài 6: Cho các số tự nhiên a và b thỏa mãn a - b chia hết cho 6. Chứng minh rằng các biểu thức sau cũng chia hết cho 6:
a) a + 5b
b) a - 13b
Biết a và b là các số nguyên dương thỏa mãn (a2 - a.b+ b2) chia hết cho 9. Chứng minh a chia hết cho3 và b chia hết cho 3