NL

Cho các số tự nhiên: 1;2;3;4;5;...n (n lớn hơn hoặc bằng 19). Chia các số đó thành 2 nhóm tùy ý. Chứng minh rằng luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau. Bài toán đúng không với n=18

H24
24 tháng 8 2023 lúc 19:22

Để chứng minh rằng luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau, ta sẽ sử dụng nguyên lý "Ngăn chặn trực tiếp" (Pigeonhole principle).

Giả sử chúng ta chia các số từ 1 đến n thành hai nhóm tùy ý, mỗi nhóm chứa một nửa số. Vì n lớn hơn hoặc bằng 19, chúng ta có ít nhất 10 số trong mỗi nhóm.

Xét các chữ số hàng đơn vị của các số từ 1 đến n. Chúng ta có 10 chữ số hàng đơn vị khác nhau từ 0 đến 9. Vì vậy, trong mỗi nhóm, chắc chắn sẽ có ít nhất một số có chữ số hàng đơn vị giống nhau.

Do đó, luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau.

Tuy nhiên, bài toán không đúng với n = 18. Khi n = 18, chúng ta có thể chia các số từ 1 đến 18 thành hai nhóm sao cho mỗi nhóm không có số nào có chữ số hàng đơn vị giống nhau. Ví dụ: nhóm 1 chứa các số 1, 2, 3, 4, 5, 6, 7, 8, 9 và nhóm 2 chứa các số 10, 11, 12, 13, 14, 15, 16, 17, 18.

Bình luận (1)

Các câu hỏi tương tự
LQ
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
NK
Xem chi tiết
HN
Xem chi tiết
SC
Xem chi tiết
LH
Xem chi tiết
HK
Xem chi tiết
DA
Xem chi tiết