Lời giải:
Đặt \((x,y,z)=(a+1,b+1,c+1)\Rightarrow a,b,c\geq 0\)
Ta có:
\(3x^2+4y^2+5z^2=52\Leftrightarrow 3(a+1)^2+4(b+1)^2+5(c+1)^2=52\)
\(\Leftrightarrow 3a^2+4b^2+5c^2+6a+8b+10c=40\)
\(\Leftrightarrow 5(a+b+c)^2+10(a+b+c)=40+2a^2+b^2+10(ab+bc+ac)+4a+2b\)
\(\Rightarrow 5(a+b+c)^2+10(a+b+c)\geq 40\Leftrightarrow a+b+c\geq 2\)
Do đó \(x+y+z=a+b+c+3\geq 5\)
Vậy \(F_{\min}=5\Leftrightarrow x=y=1,z=3\)