Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
=>\(xy+\frac{1}{xy}\in Z\)
=>\(\left(xy+\frac{1}{xy}\right)^3\)
=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)
=>ĐPCM
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
=>\(xy+\frac{1}{xy}\in Z\)
=>\(\left(xy+\frac{1}{xy}\right)^3\)
=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)
=>ĐPCM
cho x, y là các số thực sao cho \(x+\frac{1}{y}\)và \(y+\frac{1}{x}\) là các số nguyên
cmr :\(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
a. cho 2 số dương x,y thỏa man x: x+y=1
tìm min của bt : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Cho x,y là các số thực, sao cho \(x+\frac{1}{y}\)và \(y+\frac{1}{x}\)là các số nguyên.
CMR: \(x^2y^2+\frac{1}{x^2y^2}\)là số nguyên
Mong mọi người giúp em, em sẽ tích đúng cho cho câu trả lời đúng ạ, em cảm ơn nhiều lắm
Cho các số thực dương x,y,z thỏa x+2y+3y=18
CMR: \(\frac{2x+3y+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}\ge\frac{51}{7}\)
Mọi người giải giúp mình mấy bài này với nha!!
Bài 1: Cho 2 số thực x, y sao cho x + y ; x2 + y2 ; x4 + y4 là các số nguyên. Chứng minh x3 + y3 cũng là số nguyên
Bài 2: Cho a, b, c là ba số hữu tỉ thõa mãn abc = 1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
Chứng minh rằng ít nhất một trong ba sô a, b, c là bình phương của một số hữu tỉ
Bài 3: Tìm các số nguyên x; y; z thõa mãn bất đẳng thức:
x2 + y2 + c2 < xy + 3y +2z - 3
1 cho x,y,z là 3 số dương thõa mãm xyz=1 CM \(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\le1\)
2 Tìm các chữ số a,b sao cho \(\overline{a56b}⋮45\)
3 Tìm ngiệm nguyên của pt \(x^2+2y^2+2xy+3y-4=0\)