PB

Cho các số thực x;y thỏa mãn x + y + 1 = 2 x − 2 + y + 3 .  Giá trị lớn nhất của x+y

A.7

B.1

C.2

D.3

CT
9 tháng 11 2018 lúc 2:47

Đáp án A

Sử dụng BĐT buhinhacopski ta có

x − 2 + y + 3 2 ≤ 1 + 1 x − 2 + y + 3 = 2 x + y + 2 .

Tức là ta có  x + y + 1 2 ≤ 4 2 x + y + 2   . Đặt  t = x + y   . Chú ý rằng  t ≥ − 1   .

Ta có

t + 1 2 ≤ 8 t + 8 ⇔ t 2 − 6 t − 7 ≤ 0 ⇔ − 1 ≤ t ≤ 7.  

Vậy max t = 7  xảy ra khi   x − 2 = y + 3 x + y = 7 ⇔ x = 6 y = 1 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết