NA

Cho các số thực x,y. Chứng minh rằng:

3(x + y + 1)2 +1 ≥ 3xy

AH
11 tháng 11 2023 lúc 10:23

Lời giải:
BĐT cần cm tương đương với:
$3(x+y+1)^2+1-3xy\geq 0$

$\Leftrightarrow 3x^2+3y^2+3xy+6x+6y+4\geq 0$

$\Leftrightarrow 12x^2+12y^2+12xy+24x+24y+16\geq 0$

$\Leftrightarrow 3(4x^2+y^2+4xy)+9y^2+24x+24y+16\geq 0$

$\Leftrightarrow 3(2x+y)^2+12(2x+y)+9y^2+12y+16\geq 0$

$\Leftrightarrow 3[(2x+y)^2+4(2x+y)+4]+(9y^2+12y+4)\geq 0$

$\Leftrightarrow 3(2x+y+2)^2+(3y+2)^2\geq 0$ (luôn đúng)

Do đó ta có đpcm.

Bình luận (0)