1, Giải phương trình √(x^2-3x+2) +√(x+3) = √(x-2) + √(x^2+2x-3)
2, Các số thực x,a,b,c thay đổi , thỏa mãn hệ:
x+a+b+c=7
x^2 + a^2 + b^2 + c^2 = 13
Tìm GTLN và GTNN của x
3, Tìm x,y thỏa mãn 5x - 2√x . (2+y) + y^2 +1 =0
Cho các số thực dương a,b,c thay đổi thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
Tìm GTLN của P=\(\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)
1)Giải phương trình: \(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3}{2}x-3.\)
2)Cho các số thực x, y thỏa mãn \(x^2+y^2=1\)Tìm GTNN và GTLN của biểu thức :
\(T=\sqrt{4+5x}+\sqrt{4+5y}.\)
3)Cho các số thực dương a,b,c . Chứng minh rằng
\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}.\)
Đề của trường ^^. mn giúp tui ,nhất là câu 2 tìm min ...
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
1) TÌm giá trị lớn nhất và nhỏ nhất của biểu thức P =\(\sqrt{x-1}+\sqrt{3-x}\)
2) Giải phương trình \(x^2+9x+21=\sqrt{2x+9}\)
3) Cho x ,y thay đổi thỏa mãn\(0< x< 1;0< y< 1\)
Tìm giá trị lớn nhất của biểu thức P =\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
4) Cho các số dương a,b,c,d thỏa mãn \(ab+bc+ca=1\)
Chứng minh rằng: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Cho pt \(x^2-2\left(m-5\right)x+m^2-10m+24=0\)
a) tìm m để pt có 2 nghiệm thỏa mãn \(4x_2+x_1^2=13\)
b) tìm GTNN
Q=\(x_1\left(x_2+2\right)+x_2\left(x_1+2\right)+2020\)
c) tìm biểu thức liên hệ giữa X1 và X2 mà không phụ thuộc vào m
Cho a,b,c là các số dương khác nhau đôi một với hai số thay đổi luôn thoả mãn x>0;y<0 Tìm GTLN của
\(\frac{\left(a-x\right)\left(a-y\right)}{a\left(a-b\right)\left(a-c\right)}+\frac{\left(b-x\right)\left(b-y\right)}{b\left(b-c\right)\left(b-a\right)}+\frac{\left(c-x\right)\left(c-y\right)}{c\left(c-a\right)\left(c-b\right)}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3 tìm GTLN của \(\dfrac{1}{\left(a+b\right)^2+c^2}+\dfrac{1}{\left(b+c\right)^2+a^2}+\dfrac{1}{\left(a+c\right)^2+b^2}\)