Violympic toán 9

NT

Cho các số thực x, y, z, t thỏa mãn:\(\hept{\begin{cases}5x=3y=\frac{5}{2}z\\\frac{t}{x}-\frac{t}{y}+\frac{t}{z}=\frac{9}{10}\end{cases}}\)

Tính: \(P=\frac{t^2}{xy}+\frac{t^2}{yz}+\frac{t^2}{zx}\)

Giúp hộ mik với ạ !!!

VH
11 tháng 8 2019 lúc 14:44

Thay \(y=\frac{5}{3}x;\)\(z=2x\) vào \(\frac{t}{x}-\frac{t}{y}+\frac{t}{z}=\frac{9}{10}\), ta có:

\(t\left(\frac{1}{x}-\frac{3}{5x}+\frac{1}{2x}\right)=\frac{9}{10}\)\(\frac{9t}{10x}=\frac{9}{10}\Rightarrow t=x\)

Lần lượt thay \(y=\frac{5}{3}x;z=2x;t=x\)vào P, ta có:

\(P=\frac{x^2}{\frac{5}{3}.x^2}+\frac{x^2}{\frac{10}{3}.x^2}+\frac{x^2}{2x^2}=\frac{3}{5}+\frac{3}{10}+\frac{1}{2}=\frac{7}{5}\)

Bình luận (0)
H24
10 tháng 8 2019 lúc 21:57

Chứng minh

căn 9 + căn 17 + căn 9 - căn 17 =căn 34

căn 8 + căn 15 + căn 8 - căn 15 =căn 30

Bình luận (5)

Các câu hỏi tương tự
PQ
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
MK
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết