Violympic toán 9

PQ

1. \(\left\{{}\begin{matrix}x^2-yz=a\\y^2+xz=b\\z^2+xy=c\end{matrix}\right.\) Tính \(\frac{ax-by-cz}{x-y+z}\)theo a,b,c

2. \(x^2+y^2+\frac{9}{2}z^2=5\). Tìm maxA \(=xy+yz+zx\)

LH
13 tháng 11 2019 lúc 20:21

1, Mk nghĩ là yêu cầu: Tính \(\frac{ax-by-cz}{x-y-z}\) theo x,y,z

\(\left\{{}\begin{matrix}x^2-yz=a\\y^2+xz=b\\z^2+xy=c\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x^3-xyz=ax\\y^3+xyz=by\\z^3+xyz=cz\end{matrix}\right.\)

Có: \(ax-by-cz=x^3-xyz-y^3-xyz-z^3-xyz=x^3-y^3-z^3-3xyz\)

=\(\left(x-y\right)^3+3xy\left(x-y\right)-z^3-3xyz\)

=\(\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x+y\right)+z^2\right]+3xy\left(x-y-z\right)\)

=\(\left(x-y-z\right)\left(x^2-2xy+y^2+xz+yz+z^2+3xy\right)\)

=\(\left(x-y-z\right)\left(x^2+y^2+z^2+xy+xz+yz\right)\)

=>\(\frac{ax-by-cz}{x-y-z}=x^2+y^2+z^2+xy+xz+yz\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
13 tháng 11 2019 lúc 20:48

Bài 2 là loại bài buồn ngủ, cách làm cơ bản như sau:

Nhìn hệ số dự đoán điểm rơi xảy ra tại \(x=y\), vậy để tìm hệ số, ta thiết lập các BĐT sau:

\(x^2+y^2\ge2xy\) ; \(a^2x^2+b^2z^2\ge2abxz\) ; \(a^2y^2+b^2z^2\ge2abyz\)

\(\Rightarrow\left(a^2+1\right)x^2+\left(a^2+1\right)y^2+2b^2z^2\ge2\left(xy+abyz+abzx\right)\) (1)

\(\Rightarrow\left\{{}\begin{matrix}\frac{2b^2}{a^2+1}=\frac{9}{2}\\ab=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4b^2=9a^2+9\\a=\frac{1}{b}\end{matrix}\right.\)

\(\Rightarrow4b^2=\frac{9}{b^2}+9\Rightarrow4b^4-9b^2-9=0\Rightarrow b=\sqrt{3}\) \(\Rightarrow a=\frac{1}{\sqrt{3}}\)

Hệ số đã xong, vậy thì bài toán được giải như sau:

Ta có:

\(x^2+y^2\ge2xy\) ; \(\frac{1}{3}y^2+3z^2\ge2yz\) ; \(\frac{1}{3}x^2+3z^2\ge2xz\)

Cộng vế với vế:

\(\frac{4}{3}\left(x^2+y^2+\frac{9}{2}z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Rightarrow A\le\frac{2}{3}.5=\frac{10}{3}\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y=\sqrt{2};z=\frac{\sqrt{2}}{3}\\x=y=-\sqrt{2};z=-\frac{\sqrt{2}}{3}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
13 tháng 11 2019 lúc 20:03

@Nguyễn Việt Lâm

Bình luận (0)
 Khách vãng lai đã xóa
PQ
13 tháng 11 2019 lúc 20:03

@Lê Thị Thục Hiền

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
MD
Xem chi tiết
BL
Xem chi tiết
TH
Xem chi tiết
PT
Xem chi tiết
BB
Xem chi tiết
CP
Xem chi tiết