Giải pt và hệ pt:
a)\(\sqrt{5x+1}-\sqrt{4-x}+2x^2-5x+6=0\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(x+y\right)\left(x+2y\right)+3x+2y=4\end{matrix}\right.\)
Câu 2:Cho biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)(với x >0,x khác 1)
a)Rút gọn biểu thức P
b)Tính giá trị của biểu thức P khi 2\(\sqrt{x+1=5}\)
c)Tìm các giá trị của x để P >\(\dfrac{1}{2}\)
Câu 1:Chứng minh với mọi \(x\ge0;x\ne4\)thì biểu thức Q=\(\frac{\sqrt{x}+2}{\sqrt{x+4}}\)không thể nhận giá trị nguyên
Câu 2:Giải các phương trình sau:
a)\(4x^2+11x+18=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)
b)\(3x^2-11x-22=7\sqrt{\left(x+2\right)\left(x+5\right)\left(x-7\right)}\)
Câu 3:Giải các hệ phương trình:
a)\(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)+y\left(x^2-5\right)=xy^2-5x\\4x\sqrt{y+3}+2\sqrt{2x-1}=4y^2+3x+3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}.\left(2x+3\right)-2y=y^3\\\sqrt{2x+13}+5=3y+\sqrt{2x+6}\end{matrix}\right.\)
Câu 4:Giả sử (x;y) là các số thực thỏa mãn:
\(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+xy+y^2\)
\(\left\{{}\begin{matrix}x\left(2x-2y+1\right)=y\\y+2\sqrt{1-x-2x^2}=2\left(1+y\right)^2\end{matrix}\right.\)
1 cho biểu thức
a rút gọn P
P=\(\)( \(2-\dfrac{2\sqrt{x}}{\sqrt{x-3}}+\dfrac{5\left(\sqrt{x+4}\right)}{x-9} \)) :( 1-\(\dfrac{5}{\sqrt{x+3}}\))
b tìm x để P<-\(\dfrac{1}{2}\)
c tìm MaxQ= P(x\(\sqrt{x}-8x+15\sqrt{x}\))
2 cho biểu thức
A=\(\dfrac{\sqrt{x}+2}{\sqrt{x+}3}-\dfrac{5}{x+\sqrt{x-}6}+\dfrac{1}{2-\sqrt{x}}\)
a rútA
b tìm x để \(\sqrt{A}\)<A
c tìm x thuộc Z để A thuộc Z
3 cho d y=( a-1) x+1
a xác định hệ số a để ( d) đi A (2;5)
b xác định a để (d) cắt trục hoành tại điểm có hoành độ là-2
c vẽ đồ thị tìm được ở câu a,b trên cùng 1 tọa độ tìm giao điểm của B tại đường thẳng này
d tính diện tích tam giác có đỉnh là góc B và 2 đỉnh còm lại giao điểm của 2 đồ thị với trục hoành
4 giải hệ phương trình
a \(\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{Y+1}=7\\\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\\\end{matrix}\right.\)
b \(\dfrac{3}{\sqrt{x-1}-1}+\dfrac{1}{\sqrt{y+1}-x}=1\)
\(\dfrac{-1}{\sqrt{x+1}-1}-\dfrac{2}{\sqrt{y+1}-2}=3\)
c \(\left\{{}\begin{matrix}\dfrac{x-\dfrac{x-1}{2}+y+3}{2}\\\\3x-2y=4\\\end{matrix}\right.\)
giúp mình giải bài này với ạ mình đang cần gấp lắm ạ
Cho các số x,y thỏa mãn\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\).Tìm GTNN của biểu thức A=\(x^2-xy+y^2+2x+2022\)
Giải chi tiết từng bước cho mình phương trình và hệ phương trình này nha
\(\sqrt{8x^2-8x+3}+\sqrt{12x^2-12x+7}=2\left(-2x^2+2x+1\right)\)
\(\left\{{}\begin{matrix}xy-2y+x=2y^2\\x+\sqrt{y+1}=4\end{matrix}\right.\)
Bài 1 : Giải các phương trình sau:
a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)
b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)
d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x+27\)
e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
Bài 2:Cho a;b;c>0 thỏa mãn a+b+c=1
Chứng minh \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le21\)
Bài 3:Tìm các cặp số nguyên (x;y) thỏa mãn \(x^2+2y^2+2xy-5x-5y=-6\)
để (x+y) nguyên
Bài 4:Cho x,y,z là các số thực thỏa mãn điều kiện:\(x+y+z+xy+yz+zx=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Bài 5: Với ba số thực a;b;c thỏa mãn điều kiện a(a-b+c)<0,chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
Cho biểu thức :
\(Y=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a) Rút gọn Y
b) Tìm giá trị nhỏ nhất của Y .
c) Cho x > = 4 . Chứng minh : \(Y-\left|Y\right|=0\)