Bạn tham khảo:
Câu hỏi của Nguyễn Bùi Đại Hiệp - Toán lớp 9 | Học trực tuyến
Bạn tham khảo:
Câu hỏi của Nguyễn Bùi Đại Hiệp - Toán lớp 9 | Học trực tuyến
cho 3 số thực không âm x, y, z thỏa mãn \(x^2+y^2+z^2\le3y\)
\(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
Cho các số thực ko âm x,y,z thoả mãn \(x^2+y^2+z^2\le3y\)
Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(P=\frac{x\left(yz+1\right)^2}{z^2_{ }\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Các số dương x,y,z thỏa mãn điều kiện x+y+z=1.Tìm GTNN của biểu thức
F=\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(x+z\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=\(\sqrt{2}\).Tìm GTNN của biểu thức \(T=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Câu 1: Tìm m để phương trình: (x-2)(x-3)(x+4)(x+5)=m có 4 nghiệm phân biệt.
Câu 2: Cho 3 số thực x,y,z thỏa mãn: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\). Tìm giá trị nhỏ nhất của biểu thức:
P=\(\frac{z^2y^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
1) Cho x,y,z là các số thực dương thỏa mãn x+y+z=1
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x^2\left(y+z\right)}{yz}+\frac{y^2\left(z+x\right)}{zx}+\frac{z^2\left(x+y\right)}{xy}\)
2)Cho x>y và x+y≤1 .Tìm Min của A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)