Violympic toán 9

LD

Cho các số thực không âm `a,b,c` sao cho `a+b+c=1`. Tìm GTLN của `P=\sqrt{2a^2+a+1}+\sqrt{2b^2+b+1}+\sqrt{2c^2+c+1}`

NL
10 tháng 10 2020 lúc 23:48

Do \(\left\{{}\begin{matrix}0\le a;b;c\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}a\left(a-1\right)\le0\\b\left(b-1\right)\le0\\c\left(c-1\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)

\(\Rightarrow P=\sqrt{a^2+a^2+a+1}+\sqrt{b^2+b^2+b+1}+\sqrt{c^2+c^2+c+1}\)

\(P\le\sqrt{a+a^2+a+1}+\sqrt{b+b^2+b+1}+\sqrt{c+c^2+c+1}\)

\(P\le a+1+b+1+c+1=4\)

\(P_{max}=4\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Bình luận (0)

Các câu hỏi tương tự
TS
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BK
Xem chi tiết
TN
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết