Violympic toán 9

BB

Cho 3 số dương a, b, c có tổng bằng 1. Tìm GTNN của \(\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\)

NL
11 tháng 3 2022 lúc 8:38

\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(4+1\right)\left[\left(a+b\right)^2+b^2\right]}\ge\dfrac{1}{\sqrt{5}}\left(2a+2b+b\right)=\dfrac{1}{\sqrt{5}}\left(2a+3b\right)\)

Tương tự:

\(\sqrt{b^2+2bc+2c^2}\ge\dfrac{1}{\sqrt{5}}\left(2b+3c\right)\)

\(\sqrt{c^2+2ca+2a^2}\ge\dfrac{1}{\sqrt{5}}\left(2c+3a\right)\)

Cộng vế:

\(P\ge\dfrac{1}{\sqrt{5}}\left(5a+5b+5c\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (1)

Các câu hỏi tương tự
HV
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
VH
Xem chi tiết
GB
Xem chi tiết
TN
Xem chi tiết