Violympic toán 9

LD

Cho các số thực không âm `a,b,c` sao cho `a^2+b^2+c^2=1`. Tìm GTLN,GTNN của `P=\sqrt{(a+b)/2}+sqrt{(b+c)/2}+\sqrt{(c+a)/2}`

NL
11 tháng 10 2020 lúc 13:37

\(P\le\sqrt{3\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)}=\sqrt{3\left(a+b+c\right)}\le\sqrt{3\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt[4]{27}\)

\(P_{max}=\sqrt[4]{27}\) khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Do \(\left\{{}\begin{matrix}0\le a;b;c\\a^2+b^2+c^2\le1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}a\left(a-1\right)\le0\\b\left(b-1\right)\le0\\c\left(c-1\right)\le0\end{matrix}\right.\) \(\Rightarrow a+b+c\ge a^2+b^2+c^2\)

Ta có:

\(P^2=a+b+c+2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{4}}+2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{4}}+2\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{4}}\)

\(P^2=a+b+c+\sqrt{a^2+ab+bc+ca}+\sqrt{b^2+ab+bc+ca}+\sqrt{c^2+ab+bc+ca}\)

\(P^2\ge a+b+c+\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}=2\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TS
Xem chi tiết
LD
Xem chi tiết
CL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DF
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết