HP

Cho các số thực dương x,y,z tuỳ ý .Tìm GTNN của P=(1/x + 2/y + 5/z) . (căn của (xy+yz+zx))

AN
15 tháng 2 2017 lúc 8:07

Làm chi mà khó hiểu thế. Làm lại bài của Thắng Nguyễn cho dễ hiểu. 

\(P=\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)\sqrt{xy+yz+zx}\)

\(\Leftrightarrow P^2=\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)^2.\left(xy+yz+zx\right)\)

Đặt \(\hept{\begin{cases}x=\frac{a}{3}\\y=\frac{b}{2}\\z=c\end{cases}}\)thì ta có

\(P^2=\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2.\left(\frac{ab}{6}+\frac{bc}{2}+\frac{ca}{3}\right)\)

\(=\frac{1}{12}\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2.\left(2ab+6bc+4ca\right)\)

Ta có: \(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}=\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\ge12.\sqrt[12]{\frac{1}{a^3.b^4.c^5}}\)

\(\Rightarrow\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2\ge12^2.\sqrt[12]{\frac{1}{a^6.b^8.c^{10}}}\)

Ta lại có: \(2ab+6bc+4ca\ge12.\sqrt[12]{\left(ab\right)^2.\left(bc\right)^6.\left(ca\right)^4}=12.\sqrt[12]{a^6.b^8.c^{10}}\)(tách y hệt cái trên)

Từ đây ta có: \(P^2\ge\frac{1}{12}.12^2.\sqrt[12]{\frac{1}{a^6.b^8.c^{10}}}.12\sqrt[12]{a^6.b^8.c^{10}}=12^2\)

\(\Rightarrow P\ge12\)

Dấu = xảy ra khi a = b = c hay z = 2y = 3x

Bình luận (0)
TN
10 tháng 2 2017 lúc 21:33

đề? \(\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)\sqrt{xy+yz+xz}\)

Bình luận (0)
TN
10 tháng 2 2017 lúc 22:14

Đặt \(\hept{\begin{cases}a=\frac{x}{3}\\b=\frac{y}{2}\\c=z\end{cases}}\). Do đó, áp dụng BĐT AM-GM ta có:

\(\left(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\right)^2=\left(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\right)^2\left(ab+ac+bc\right)\)

\(=\frac{1}{12}\left(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}\right)^2\left(2xy+4xz+6yz\right)\)

\(\ge\frac{1}{12}\cdot12^3\sqrt[12]{x^{-6}y^{-8}z^{-10}x^2y^2x^4z^4y^6z^6}=144\)

Vì vậy \(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\ge12\) 

Dấu "=" xảy ra khi \(x=y=z=1\) thì P đạt GTNN là 12

Bình luận (0)
H24
15 tháng 2 2017 lúc 9:23

với dòng phương trình đầu tiên  của @TN=> (ab+bc+ac)=1 ( có thấy đề nói cái này =1 đâu)

x,y,z tùy ý => a,b,c tùy ý => sai. mình chỉ xem đên đấy

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
HC
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
DH
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
LC
Xem chi tiết
NC
Xem chi tiết