1/xy+1/xz>=1
<=> 1/x(1/y+1/z) >=1
<=>1/y+1/z>=x=4-y-z
<=>1/y+y+1/z+z>=4
<=>(1/y+y)+(1/z+z)>=4 (dễ nhá,tự cm đc chứ j)
>=2 >=2
1/xy+1/xz>=1
<=> 1/x(1/y+1/z) >=1
<=>1/y+1/z>=x=4-y-z
<=>1/y+y+1/z+z>=4
<=>(1/y+y)+(1/z+z)>=4 (dễ nhá,tự cm đc chứ j)
>=2 >=2
Cho các số thực dương x, y, z thoả mãn x + y + z = 4
CMR \(\frac{1}{xy}+\frac{1}{xz}\ge1\)
cho x,y,z là các số thực dương thỏa mãn xy+yz+xz=xyz(x+y+z)
CMR \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge1\)
Cho x ; y; z là các số dương TM : xy + yz + xz = 670 CMR :
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
cho các số thực dương x,y,z thỏa mãn x+y+z=4
C/m \(\frac{1}{xy}+\frac{1}{xz}\ge1\)
ai giúp mình với, đang cần gấp ạ
Cho các số dương x,y,z TM: x+y+z = 1
Tìm GTNN của A = \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\frac{1}{16}\)
cho các số thực dương x,y,z tm x+y+z<=1
tìm Min P=\(\frac{1}{xz}+\frac{1}{yz}\)
cho các số thực dương x,y,z thoả mãn \(xy\ge1,z\ge1\)
chứng minh BĐT \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
cho x,y,z là các số thực dương thỏa mãn \(xy+yz+xz\ge3\)
CMR : \(\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{z+3y}\ge\frac{3}{4}\)