NT

cho các số thực dương x;y;z thỏa mãn \(\frac{1}{x^2+2}+\frac{1}{y^2+2}+\frac{1}{z^2+2}=\frac{1}{3}.\)CMR:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{\sqrt{7}}\)

LL
19 tháng 7 2017 lúc 0:03

Đừng để bị đánh lừa, đưa bài toán này về cơ bản bằng cách đặt \(\left(x^2+2;y^2+2;z^2+2\right)\rightarrow\left(a,b,c\right)\)

thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{3}\).tìm max của \(sigma\frac{1}{\sqrt{a-2}}\) đến đây nhường chủ tus 

Bình luận (0)
TN
23 tháng 9 2017 lúc 18:01

Nhìn lại lịch sử và đào ra bài này :v cái đó đặt ẩn rồi chuyển qua cũng k đẹp đâu, tham khảo :|

enter image description here

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
VM
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
K2
Xem chi tiết
LC
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết