cho 2 số thức dương thỏa mãn \(xy>2020x+2021y\)
chứng minh rằng \(x+y>\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
Cho các số thực dương x,y,z tm : x+y+z=4. CMR \(\frac{1}{xy}+\frac{1}{xz}\ge1\)
Cho x y là các số thực dương tm x^2+y^2=9 tìm gtnn của p=3x+y+xy
1) Tìm các số nguyên dương x,y tm pt \(xy^2+2xy+x=32y\)
2) cho 2 STN a,b tm \(2a^2+a=3b^2+b\). CMR \(2a+2b+1\) là số chính phương
cho các số thực dương x,y tm \(\left(x+y-1\right)^2=xy\)
Tìm min \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
cho x,y,zlà các số thực dương tm: x+y+z=3.CMR P=x√y3+1+y√z3+1+z√x3+1
cho x,y,zlà các số thực dương tm: x+y+z=3.CMR P=\(x\sqrt{y^3+1}+y\sqrt{z^3+1}+z\sqrt{x^3+1}\)
Cho x ; y; z là các số dương TM : xy + yz + xz = 670 CMR :
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)