SN

cho các số thực dương x1>(=)x2>(=)x3>(=)...>(=)xn

chứng minh rằng:

\(\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...+\frac{x_n+x_1}{2}\le\frac{x_1+x_2+x_3}{3}+\frac{x_2+x_3+x_4}{3}+...+\frac{x_n+x_1+x_2}{3}\)

DL
11 tháng 7 2016 lúc 12:29

Nhìn nó tưởng khủng hóa ra đơn giản lắm :D

Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn

Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn

=> VT = VP. đpcm

Bình luận (0)
HN
11 tháng 7 2016 lúc 13:11

Lão Linh mới xét đến điều kiện dấu "=" xảy  ra

Thế còn điều kiện "<" vứt đâu?

Bình luận (0)
SN
11 tháng 7 2016 lúc 16:50

nếu nó mà dễ thế thì mình đã ko hỏi rồi,linh à

Bình luận (0)

Các câu hỏi tương tự
SN
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
ZZ
Xem chi tiết
TK
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
LP
Xem chi tiết