Violympic toán 9

H24

Cho các số thực dương x, y, z thỏa mãn \(\frac{12}{xy}+\frac{20}{yz}+\frac{15}{zx}\le1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{3}{\sqrt{x^2+9}}+\frac{4}{\sqrt{y^2+16}}+\frac{5}{\sqrt{z^2+25}}\)

AH
30 tháng 8 2020 lúc 10:05

Nếu đề làm tìm max P thì giải như sau:

Đặt $(\frac{3}{x}, \frac{4}{y}, \frac{5}{z})=(a,b,c)$ thì bài toán trở thành:

Cho các số thực dương $a,b,c$ thỏa mãn $ab+bc+ac\leq 1$.

Tìm GTLN của $P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}$

---------------------------

Vì $ab+bc+ac\leq 1$ nên:

$P\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}$

$=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}$

$\leq \frac{1}{2}(\frac{a}{a+b}+\frac{a}{a+c})+\frac{1}{2}(\frac{b}{b+c}+\frac{b}{b+a})+\frac{1}{2}(\frac{c}{c+a}+\frac{c}{c+b})$

(theo AM-GM)

Hay $P\leq \frac{1}{2}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})=\frac{3}{2}$

Vậy $P_{\max}=\frac{3}{2}$.

Giá trị này đạt được khi $a=b=c=\frac{1}{\sqrt{3}}\Leftrightarrow \frac{3}{x}=\frac{4}{y}=\frac{5}{z}=\frac{1}{\sqrt{3}}$

 

Bình luận (0)
AH
29 tháng 8 2020 lúc 23:18

Bạn xem lại đề xem tìm max hay min P vậy? Với điều kiện đề mình nghĩ tìm max P.

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
LV
Xem chi tiết
NG
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
HT
Xem chi tiết
KL
Xem chi tiết