LQ

Cho các số thực dương không âm thỏa mãn a+b+c=3.Cm

\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

KN
7 tháng 7 2020 lúc 14:34

Đặt \(K=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

\(\Rightarrow2K=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}=\)\(2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}\)\(+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)\(\le a\left[\left(b+1\right)+\left(b^2-b+1\right)\right]+b\left[\left(c+1\right)+\left(c^2-c+1\right)\right]\)\(+c\left[\left(a+1\right)+\left(a^2-a+1\right)\right]\)(Theo BĐT AM - GM)

\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)\)\(=ab^2+bc^2+ca^2+6\)

Đặt \(M=ab^2+bc^2+ca^2\)

Không mất tính tổng quát, giả sử \(a\ge c\ge b\)thì ta có \(b\left(a-c\right)\left(c-b\right)\ge0\Leftrightarrow abc+b^2c\ge ab^2+bc^2\)

\(\Leftrightarrow ab^2+bc^2+ca^2\le abc+b^2c+ca^2\)

hay \(M\le abc+b^2c+ca^2\le2abc+b^2c+ca^2=c\left(a+b\right)^2\)\(=4c.\frac{a+b}{2}.\frac{a+b}{2}\le\frac{4}{27}\left(c+\frac{a+b}{2}+\frac{a+b}{2}\right)^3\)\(=\frac{4\left(a+b+c\right)^3}{27}=4\)

\(\Rightarrow2K\le10\Rightarrow K\le10\)

Vậy \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)=\left(2,0,1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
7 tháng 7 2020 lúc 15:00

Kiệt cop sai đáp án rồi kìa :))
Đoạn cuối không giả sử \(a\ge c\ge b\) được đâu nhá

Mà phải giả sử b là số nằm giữa a và c

Khi đó:

\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)

\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2=b\left(a^2+ac+c^2\right)\)

\(\le b\left(a^2+2ac+c^2\right)=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\) *đúng *

Vậy ............................

Bình luận (0)
 Khách vãng lai đã xóa
KN
7 tháng 7 2020 lúc 15:21

chắc là sai ngay...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
LC
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
ND
Xem chi tiết