ta có: \(P=a^2+ab+bc+ac=a\left(a+b+c\right)+bc=a.\frac{1}{abc}+bc=\frac{1}{bc}+bc\)
Áp dụng bất đẳng thức cauchy:
\(bc+\frac{1}{bc}\ge2\sqrt{\frac{1}{bc}.bc}=2\)
Dấu = xảy ra khi bc=1.( Chẳng hạn khi b=c=1;\(a=\sqrt{2}-1\))
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
ta có: \(P=a^2+ab+bc+ac=a\left(a+b+c\right)+bc=a.\frac{1}{abc}+bc=\frac{1}{bc}+bc\)
Áp dụng bất đẳng thức cauchy:
\(bc+\frac{1}{bc}\ge2\sqrt{\frac{1}{bc}.bc}=2\)
Dấu = xảy ra khi bc=1.( Chẳng hạn khi b=c=1;\(a=\sqrt{2}-1\))
1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
Bài toán:
a) Cho các số thực dương a,b,c thỏa mãn a+b+2c=6. Tìm GTNN của A= a^2+ b^2+ c^2 + 1/a^2+b^2+c^2
b) Cho các số thực dương a,b,c thỏa mãn Biết rằng 1 bé hơn hoặc bằng a;b;c bé hơn hoặc bằng 2 và a+b+c=5
tìm GTLN, GTNN của B=a^3+b^3+c^3
Giúp mình giải bài này với!!!!!!!!!!!!!!!!
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)
Cho a,b,c là các số thực dương thỏa mãn \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
Tìm GTNN của M=(a+b)(b+c)(c+a)
cho a,b,c là các số thực dương thỏa mãn a+b+c=1. tìm gtnn của R=\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho các số thực dương a,b,c thỏa mãn \(a+b+c=\frac{1}{abc}\). Tìm GTNN của biểu thức \(P=\left(a+b\right)\left(a+c\right)\)
chóa,b,c là các số thực dương thỏa mãn a+b+c=6 tim GTNN a^2/(a+b) + b^2/(c+a) + c^2/(b+c)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm GTNN của
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho các số thực dương a,b,c thỏa mãn \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\)
Tìm GTNN của biểu thức: \(P=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\)