TM

Cho các số thực dương a,b,c thoả mãn ab+bc+ca=3. Chứng minh rằng: 4(a+b+c)+abc≥13.

Giúp mình với!

LN
7 tháng 8 2019 lúc 11:42

Vì \(ab+bc+ac=3\)  =>   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{abc}\)

Đặt \(\frac{1}{a}=x\):  \(\frac{1}{b}=y\):  \(\frac{1}{c}=z\)=> x+y+z=3xyz

Ta có   \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{xyz}\ge13\)

AD BĐT  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) dấu = khi a=b=c ta có 

  \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{36}{x+y+z}\)=\(\frac{36}{3xyz}=\frac{12}{xyz}\)

=> \(\frac{12}{xyz}+\frac{1}{xyz}\ge13\)

=>  \(\frac{13}{xyz}\ge13\)

mà \(3xyz=x+y+z\ge3\sqrt[3]{xyz}\)dấu = khi x=y=z 

=> xyz\(\le1\)

=> đpcm 

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
VP
Xem chi tiết
TM
Xem chi tiết
ZZ
Xem chi tiết
FZ
Xem chi tiết
FZ
Xem chi tiết
NM
Xem chi tiết