cho các số a, b, c khác 0 thoả mãn \(2ab+bc+2ca=0\). hãy tính \(A=\dfrac{bc}{8a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)
+) Tìm dư của phép chia đa thức x2022-x2021+2020 cho đa thức x2-1
+) CMR: Với mọi n∈N và 2n+3; 3n+1 đều là SCP thì n⋮40
+) Cho biểu thức \(M=\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}\)
CMR: Nếu M=1 thì 2 trong 3 phân thức đã cho của biểu thức M bằng 0, phân thức còn lại bằng 1.
Cho 3 số dương a,b,c thõa a+b+c =3. CMR:
\(A=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge1\)
\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}\)+\(\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}\)+\(\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\) ≤ 1 cho a,b,c là 3 số dương. Chứng minh các BĐT sau
Cho a,b,c là các số thực dương thỏa mãn ab+bc+ca=3
Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn ab + bc + ca = 1. Tính giá trị của biểu thức:\(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{^{\left[ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\right]^2}}\)
Cho a, b, c đôi một khác nhau và khác 0 không thỏa mãn:
(a+b+c)2 = a2 + b2 + c2
Tính giá trị biểu thức: A = \(\dfrac{a^2}{a^2+2bc}\) + \(\dfrac{b^2}{b^2+2ca}\) + \(\dfrac{c^2}{c^2+2ab}\)
mk cần gấp mong mn giúp đỡ, cảm ơn mn rất nhiều.
Cho 1/a + 1/b +1/c=0. Đặt A=(4a^2-bc)/(a^2+2bc), B=(4b^2-ca)/(2ca+b^2), C=(4c^2-ab)/(c^2+2ab). CMR:A.B.C=1
cho a, b, c là các số không âm. Chứng minh rằng:
\(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)