Violympic toán 9

TV

Cho các số thực dương a, b,c thỏa mãn : a ≥ 1, b ≥ 4, c ≥ 9 . Tìm GTLN của biểu thức :
P = \(\dfrac{bc\sqrt{a-1}+ac\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)
Các God toán ơi giải giú mình với !

NL
9 tháng 12 2018 lúc 22:23

\(P=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-4}}{b}+\dfrac{\sqrt{c-9}}{c}=\dfrac{1.\sqrt{a-1}}{a}+\dfrac{2.\sqrt{b-4}}{2b}+\dfrac{3.\sqrt{c-9}}{3c}\)

Áp dụng hằng đẳng thức \(xy\le\dfrac{x^2+y^2}{2}\) ta được
\(P\le\dfrac{1+a-1}{2a}+\dfrac{4+b-4}{4b}+\dfrac{9+c-9}{6c}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{11}{12}\)

\(\Rightarrow P_{max}=\dfrac{11}{12}\) khi \(\left\{{}\begin{matrix}\sqrt{a-1}=1\\\sqrt{b-4}=2\\\sqrt{c-9}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=18\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
H24
Xem chi tiết
DF
Xem chi tiết
TS
Xem chi tiết
HM
Xem chi tiết
PT
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết