Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

KN

Cho các số thực a,b,c thỏa mãn \(a+b+c=1.\)

Chứng minh rằng: \(8abc-8\le\left(ab+bc+ca+1\right)^2\)

NL
21 tháng 8 2020 lúc 15:12

- Nếu cả 3 số đều ko âm thì \(abc\le\frac{1}{27}\Rightarrow VT< 0\) BĐT luôn đúng

- Nếu 2 trong 3 số không âm thì \(abc\le0\Rightarrow VT< 0\) BĐT luôn đúng

Do đó ta chỉ cần chứng minh trong trường hợp 2 số âm, 1 số dương

Không mất tính tổng quát, giả sử \(\left\{{}\begin{matrix}c>0\\a;b< 0\end{matrix}\right.\) đặt \(\left\{{}\begin{matrix}a=-p\\b=-q\end{matrix}\right.\) \(\Rightarrow p;q;c>0\)

\(\Rightarrow c-p-q=1\Rightarrow c=p+q+1\)

BĐT trở thành: \(8pq\left(p+q\right)-8\le\left[\left(p+q\right)^2+p+q-pq-1\right]^2\)

Đặt \(\left\{{}\begin{matrix}p+q=x>0\\pq=y>0\end{matrix}\right.\) \(\Rightarrow x^2\ge4y\)

Ta cần c/m: \(8y\left(x+1\right)-8\le\left(x^2+x-y-1\right)^2\)

\(\Leftrightarrow x^4+2x^3-2x^2y-x^2-10xy-2x+y^2-6y+9\ge0\)

\(\Leftrightarrow x^4+2x^3-2x^2y-2x^2-10xy-2x+8+\left(y-1\right)^2+\left(x^2-4y\right)\ge0\)

Do \(\left(y-1\right)^2+\left(x^2-4y\right)\ge0\) nên ta chỉ cần chứng minh:

\(x^4+2x^3-2x^2y-2x^2-10xy-2x+8\ge0\)

\(\Leftrightarrow x^4+2x^3-2x^2\left(\frac{x^2}{4}\right)-2x^2-10x\left(\frac{x^2}{4}\right)-2x+8\ge0\)

\(\Leftrightarrow x^4-x^3-4x^2-4x+16\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+3x+4\right)\ge0\) (luôn đúng với \(x>0\))

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Leftrightarrow p=q=1\) hay \(\left(a;b;c\right)=\left(-1;-1;3\right)\) và hoán vị

//Hơi trâu bò :(

Bình luận (0)

Các câu hỏi tương tự
TS
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết