Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

VT

Cho các số thực a,b thỏa a,b > 0 và 1/a + 1/b + 1/c = 0. Chứng minh rằng: căn a+c cộng căn b + c bằng căn a + b

PA
30 tháng 6 2023 lúc 9:46

Từ giả thiết ta có: `1/a+1/b+1/c=0=>ab+bc+ca=0`

Ta có:
`sqrt(a+c)+sqrt(b+c)=\sqrt(a+b)`

`=>(sqrt(a+c)+sqrt(b+c))^2=(sqrt(a+b))^2`

`<=>2c+2\sqrt((a+c)(b+c))=0`

`<=>2c+2\sqrt(ab+bc+ca+c^2)=0`

`<=>2\sqrt(c^2)+2c=0`

`<=>|c|+c=0(**)`

- Nếu `c>=0` thì `(**)<=>2c=0<=>c=0(` Mâu thuẫn với điều kiện toán học do không tồn tại `1/c=1/0)`

Vậy `c<0` do đó `(**)<=>0=0(` Luôn đúng `)`

Vậy ta có `đfcm`

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
NT
Xem chi tiết
PK
Xem chi tiết
HT
Xem chi tiết
FM
Xem chi tiết
TV
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
GN
Xem chi tiết