Đơn Giản thôi
Ta có \(\hept{\begin{cases}a^2+a=b\\b^2+b=b\end{cases}}\)Mà \(b=b\)nên \(a^2+a=b^2+b\)
Để \(a^2+a=b^2+b\)thì \(a^2=b^2\)và \(a=b\)(đpcm)
Vậy a=b
Nhật Khôi nè.Tau nghĩ là a2=b2 chưa chắc a=b. Nếu a và là hai số đối nhau thì bình lên cũng bằng nhau mà?
Vì { a2 + a ; a } và { b2 + b ; b } bằng nhau nên ta có các trường hợp sau :
TH1 : a = b \( \implies\) a2 +a = b2 + b ( Luôn đúng )
TH2 : a2 + a = b và b2 + b = a
\( \implies\) a2 + a + b2 + b = a + b
\( \implies\) a2 + b2 = 0 ( 1 )
Ta có : a2 \(\geq\) 0 ; b2 \(\geq\) 0 \( \implies\) a2 + b2 \(\geq\) 0 ( 2 )
Từ ( 1 ) ; ( 2 ) Dấu " = " xảy ra \(\iff\) \(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\) \(\iff\) \(\hept{\begin{cases}a=0\\b=0\end{cases}}\) \( \implies\) a = b = 0
KL : a = b