Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NV

Cho các số thực a, b, x, y thõa mãn: \(x^2+y^2=1;\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)

Chứng minh \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n},\forall n\in N\)

VC
29 tháng 12 2017 lúc 18:36

áp dụng bđt svacxơ, ta có 

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)

nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)

,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)

từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TQ
Xem chi tiết
HT
Xem chi tiết
TK
Xem chi tiết
GL
Xem chi tiết
DA
Xem chi tiết
PA
Xem chi tiết