Violympic toán 9

DH

Cho các số thực a, b, c khác 0 thỏa mãn a + b + c = 0. CMR: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

NL
22 tháng 6 2019 lúc 10:41

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0.\frac{2}{abc}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\left(a+b+c\right).\frac{2}{abc}}\)

\(=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
VH
Xem chi tiết
BL
Xem chi tiết
NM
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết