Cho các số nguyên dương n,a,b,c,d thỏa mãn n2\(\le\)a<b\(\le\)c<d<(n+1)2. Chứng minh rằng |ad-bc|\(\ge\)1.
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Cho a, b, c, d, m ,n là các số nguyên dương thoả mãn: a^3 + b = c^3 +d = m^3+n. Chứng minh rằng: Q = b^3 + a + d^3 + c + n^3 + m là hợp số
cho bốn số nguyên dương a, b, c, d thỏa mãn ab=cd. chứng minh rằng a^5+b^5=c^5+d^5 là hợp số
Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm).
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm).
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30.
Bài 4: (6,0 điểm).
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng
(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2
Cho bốn số nguyên dương a, b , c , d thỏa mãn ab=cd . Chứng minh rằng a^5 + b^5 + c^5 + d^5 là hợp số
Cho 4 số a, b, c,d thỏa mãn:
a+b+c+d=0 và ab+ac+ad+bc+bd+cd=0
Chứng minh rằng: a=b=c=d.
1. cho các số nguyên a,b,c,d khác 0 thỏa mãn ab=cd
chứng minh rằng \(a^{2014}+b^{2014}+c^{2014}+d^{2014},\) là hợp số
2. xác định đa thức f(x)=\(x^2+a.x+b\)biết rằng \(\left|f\left(x\right)\right|\le\frac{1}{2}\forall x\)
thỏa mãn \(-1\le x< 1\)
Cho a,b,c,d thỏa mãn a+b+c+d =0 .
Chứng minh :N=(ab+2c^2)(bc+2a^2)(ca+2b^2) là số dương