PL

Cho các số hữu tỉ: \(x=\frac{a}{b}\)\(y=\frac{c}{d}\)(b>0, d>0) và \(z=\frac{a+c}{b+d}\). So sánh x và z, y và z.

HL
11 tháng 9 2016 lúc 21:36

* So sánh \(\frac{a}{b}and\frac{a+c}{b+d}\)

\(\frac{a}{b}=\frac{a.\left(b+d\right)}{b.\left(b+d\right)}\) và \(\frac{a+c}{b+d}=\frac{\left(a+c\right).b}{\left(b+d\right).b}\)

TỪ đây ta so sánh a.(b+d) và  ( a+ c).b 

a.( b+d) = ab+ ad

(a+c). b = ab+ bc 

Nếu \(\frac{a}{b}>\frac{c}{d}\)thì x> z

nếu \(\frac{a}{b}< \frac{c}{d}\)thì x < z

nếu \(\frac{a}{b}=\frac{c}{d}\)thì x = z 

So sánh y và z cũng tương tự!

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
NH
Xem chi tiết
MH
Xem chi tiết
LL
Xem chi tiết
JR
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
TQ
Xem chi tiết
LC
Xem chi tiết