Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) Cho a, b, c > 0. CMR: \(a^2+b^2+c^2+abc+5\ge3\left(a+b+c\right)\)
2) Cho a, b, c > 0, đặt \(x=a+\frac{1}{b}\), \(y=b+\frac{1}{c}\), \(z=c+\frac{1}{a}\). Chứng minh rằng: \(xy+yz+zx\ge2\left(x+y+z\right)\)
3) Cho các số dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng: \(x^2+y^2+z^2+x+y+z\ge2\left(xy+yz+zx\right)\)
Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng
\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
1.Cho ba số dương a+b+c=1.Chứng minh rằng:
\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
2.Cho x,y,z là các số thực dương và thỏa mãn xy+yz+zx=xyz.Chứng minh rằng:
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3+\left(1+y\right)\left(1+z\right)}+\frac{zx}{y^2+\left(1+z\right)\left(1+x\right)}\)\(\ge\)\(\frac{1}{16}\)
3.Cho hai số thực dương a,b và thỏa mãn 2a +3b \(\le4\).Tìm giá trị nhỏ nhất của biểu thức:
Q=\(\frac{2002}{a}+\frac{2017}{b}+2996a-5501b\)
4.Gỉai phương trình : \(\left(x^2-4\right)^3=\left(\sqrt[3]{\left(x^2+4\right)^2}+4\right)^2\)
Cho x,y,z là các số thực thỏa mãn (x-y)(x-z)=1 ; y khác z .
Chứng minh \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)≥4
Cho \(x,y,z>2\) thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Chứng minh rằng :
\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
1) Chứng minh BĐT: \(\frac{a+b}{2}-\sqrt{ab}< \frac{\left(a-b\right)^2}{8b}\) với a>b>0.
2) Cho ba số dương x, y, z thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2.\) Tìm GTLN càu P=xyz.
Cho x, y, z là các số thực dương thỏa mãn (x-y)(x-z)=1 y khác z
CM: \(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\ge4\)
Cho x,y,z là các số thực dương thỏa mãn xyz = 1. Tìm GTLN của biểu thức:
\(P=\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
Cho 3 số dương x, y, z thỏa mãn điều kiện xy + yz + zx = 1. Tính tổng:
\(S=\sqrt[x]{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+\sqrt[y]{\frac{\left(1+x^2\right)\left(1+z^2\right)}{\left(1+y^2\right)}}+\sqrt[z]{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)