Violympic toán 9

AJ

1) Chứng minh BĐT: \(\frac{a+b}{2}-\sqrt{ab}< \frac{\left(a-b\right)^2}{8b}\) với a>b>0.

2) Cho ba số dương x, y, z thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2.\) Tìm GTLN càu P=xyz.

LD
2 tháng 2 2020 lúc 12:52

2 )\(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

CMTT \(\frac{1}{1+y}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân vế với vế 3 bđt được

\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow P=xyz\le\frac{1}{8}\)

Dấu "=" xảy ra khi z=y=z = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
LD
2 tháng 2 2020 lúc 12:55

1)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{8b}>\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\Leftrightarrow\frac{a-b}{2\sqrt{b}}>\sqrt{a}-\sqrt{b}\)

\(\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2>0\) (có a>b>0 theo gt) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LH
Xem chi tiết
NM
Xem chi tiết
BL
Xem chi tiết
LV
Xem chi tiết
NH
Xem chi tiết
TP
Xem chi tiết
KA
Xem chi tiết
VH
Xem chi tiết
AD
Xem chi tiết