Ta co: \(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^4\ge2y^3-y^2\)
\(\Rightarrow x^2+y^3\ge x^3+y^4\ge2y^3-y^2+x^3\Leftrightarrow x^2+y^2\ge x^3+y^3\)
k giai tiep
Ta co: \(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^4\ge2y^3-y^2\)
\(\Rightarrow x^2+y^3\ge x^3+y^4\ge2y^3-y^2+x^3\Leftrightarrow x^2+y^2\ge x^3+y^3\)
k giai tiep
Cho cac so duong x,y thoa man dieu kien \(x^2+y^3\ge x^3+y^4\)
Chung minh \(x^3+y^3\le x^2+y^2\le x+y\le2\)
Cho các số dương x,y thoả mãn điểu kiện \(x^2+y^3\ge x^3+y^4\) . Chứng minh: \(x^3+y^3\le x^2+y^2\le x+y\le2\)
cho các số dương x, y thoả mãn điều kiện \(x^2+y^3\ge x^3+y^4\). Chứng minh: \(x^3+y^3\le x^2+y^2\le x+y\le2\)
cho cac so nguyen duong x,y thoa man
x-y=x3-y3
cmr x2+y2<1
may ban gium mk nhanh nha cam on
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
cho cac so duong x,y thoa x - y = x^3 + y^3. CM x^2 + y^2 < 1
1) Cho 2 so duong x,y thoa man \(x+y\le xy\)
Tim GTLN cua bt \(B=\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\)
2) Cho \(\hept{\begin{cases}x,y,z\in\left[0;2\right]\\x+y+z=3\end{cases}}\)
CMR \(x^2+y^2+z^2\le5\)
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)