\(Max\) \(A\)=\(3\)
\(\Leftrightarrow x=y=z=1\)
đặt \(x=a^3.y=b^3.z=c^3\)
dùng bđt \(a^3+b^3\ge ab\left(a+b\right)\)
các bạn có thể giải thích kỹ hơn giúp mình ko?
\(Max\) \(A\)=\(3\)
\(\Leftrightarrow x=y=z=1\)
đặt \(x=a^3.y=b^3.z=c^3\)
dùng bđt \(a^3+b^3\ge ab\left(a+b\right)\)
các bạn có thể giải thích kỹ hơn giúp mình ko?
cho x,y,z là các số dương thay đổi và thỏa mãn xyz=1
tìm giá trị lớn nhất của P=\(\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+xz}\)
cho x;y;z là các số thực dương thõa mãn : x + y + z = xyz
Tìm giá trị lớn nhất của biểu thức P = \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
Cho các số thực duong x,y,z thỏa mãn xyz=1. Tìm giá trị lớn nhất của biểu thức \(Q=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z+xyz=4. Tìm giá trị nhỏ nhất của biểu thức Q=\(\left(1+\frac{x}{y}+xz\right)\left(1+\frac{y}{z}+yz\right)\left(1+\frac{z}{x}+xz\right)\)
Cho x, y, z là số dương sao cho xyz=1. Tìm giá trị lớn nhất của biểu thức
\(A=\frac{6}{\left(x+1\right)^2+y^2+1}+\frac{6}{\left(y+1\right)^2+z^2+1}+\frac{6}{\left(z+1\right)^2+x^2+1}\)
Cho x,y,z là các số thực dương và thỏa mãn điều kiện x+y+z=xyz. Tìm giá thị lớn nhất của:
\(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1 +z^2}}\)
Cho x,y,z là các số dương thỏa mãn xyz=1
Tìm giá trị nhỏ nhất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
Cho x,y,z là số thực dương thõa mãn x+y+z=1.Tìm giá trị lớn nhất của biểu thức \(Q=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho các số thực dương x,y,z thỏa mãn xyz=1 . Tìm giá trị nhỏ hất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)