đặt \(A=\sqrt{a^2+b^2}\) ad cosi: \(ab\le\frac{a^2+b^2}{2}\)=\(\frac{A^2}{2}\)
ad bunhia copxki \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)=2A^2 nên \(a+b\le\sqrt{2}A\)
=>\(\frac{A^2}{2}+\sqrt{2}A\ge3\)=>\(A^2+2\sqrt{2}A\ge6=>\left(A+\sqrt{2}\right)^2\ge8\)
\(=>A+\sqrt{2}\ge2\sqrt{2}=>A\ge\sqrt{2}\)nên \(a^2+b^2\ge2\)
dấu = xr <=>a=b=1
Áp dụng bđt cô si, ta có
\(a^2+1\ge2a;b^2+1\ge2b;a^2+b^2\ge2ab\)
=>\(2\left(a^2+b^2\right)+2\ge2\left(ab+a+b\right)=6\Rightarrow2\left(a^2+b^2\right)\ge4\Rightarrow a^2+b^2\ge2\)
dâu = xảy ra <=>a=b=1
cậu hỏi mk hay vũ tiền châu?